www.hj8828.com 1

【www.hj8828.com】什么是集中管控式大数据安全架构

当企业转变为数据驱动的机器时,其潜力是巨大的:企业所拥有的数据可能成为获得竞争优势的关键。因此,企业的数据和基础设施的安全也变得比以往任何时候都重要。

什么是集中管控式大数据安全架构,大数据已不再是一个单纯的热门词汇了,随着技术的发展大数据已在企业、政府、金融、医疗、电信等领域得到了广泛的部署和应用,并通过持续不断的发展,大数据也已在各领域产生了明显的应用价值。

转自:

在许多情况下,企业或组织都可能得到Forrester所说的“有毒的数据”。例如,一家无线公司正在收集谁登录哪一个天线塔、他们在线逗留多长时间、他们使用多少数据、他们是在移动还是处于静止状态等数据,这些数据可用来了解用户行为的状况。

www.hj8828.com 1

www.hj8828.com,大数据已不再是一个单纯的热门词汇了,随着技术的发展大数据已在企业、政府、金融、医疗、电信等领域得到了广泛的部署和应用,并通过持续不断的发展,大数据也已在各领域产生了明显的应用价值。

这家无线公司也许有许多用户生成的数据:信用卡号码、社会保险号码、购买习惯数据和用户使用任何信息的方式等。关联这种数据和从这些数据中提取推断结果的能力是有价值的,但是,这种做法也是有害的,如果这种关联的数据泄露到机构外部并且落入他人手中,这将给个人和机构造成灾难性的损失。

企业已开始热衷于利用大数据技术收集和存储海量数据,并对其进行分析。企业所收集的数据量也呈指数级增长,包括交易数据、位置数据、用户交互数据、物流数据、供应链数据、企业经营数据、硬件监控数据、应用日志数据等。由于这些海量数据中包含大量企业或个人的敏感信息,数据安全和隐私保护的问题逐渐突显出来。而这些问题由于大数据的三大主要特性而被进一步放大:数据量大(Volume)、数据增长快(Velocity)和数据多样化(Variety)。现在,当我们说“大数据”的时候,已不再是单指海量的数据了,而是基础设施(云服务器)、应用、数据源、分析模型、数据存储和平台的组合,而正是这些使得大数据安全面临着不同寻常的挑战。

企业已开始热衷于利用大数据技术收集和存储海量数据,并对其进行分析。企业所收集的数据量也呈指数级增长,包括交易数据、位置数据、用户交互数据、物流数据、供应链数据、企业经营数据、硬件监控数据、应用日志数据等。由于这些海量数据中包含大量企业或个人的敏感信息,数据安全和隐私保护的问题逐渐突显出来。而这些问题由于大数据的三大主要特性而被进一步放大:数据量大(Volume)、数据增长快(Velocity)和数据多样化(Variety)。现在,当我们说“大数据”的时候,已不再是单指海量的数据了,而是基础设施(云服务器)、应用、数据源、分析模型、数据存储和平台的组合,而正是这些使得大数据安全面临着不同寻常的挑战。

应用大数据,不要忘记法规遵从和控制。下面是保证大数据安全的9个技巧。

与传统数据安全相比,大数据安全有什么不同

与传统数据安全相比,大数据安全有什么不同

1.
在启动大数据项目之前要考虑安全问题。
不应该等到发生数据突破事件之后再采取保证数据安全的措施。组织的IT安全团队和参加大数据项目的其他人员在向分布式计算(Hadoop)集群安装和发送大数据之前应该认真地讨论安全问题。

传统数据安全技术的概念是基于保护单节点实例的安全,例如一台数据库或服务器,而不是像Hadoop这样的分布式计算环境。传统安全技术在这种大型的分布式环境中不再有效。另外,在大规模的Hadoop集群中,各服务器和组件的安全配置出现不一致的机率将大大增加,这将导致更多的安全漏洞产生。大数据平台存储着各种各样的数据,每一种数据源都可能需要有其相应的访问限制和安全策略。而当需要整合不同数据源时,就变得更加难以平衡对数据的安全策略的应用。同时,快速增长的海量数据使得大数据平台中的敏感信息和个人隐私信息无处不在,准确发现和定位敏感信息并制定针对性的访问控制策略变得愈加困难,而对敏感信息的访问的实时监控也是保障大数据安全的重要任务之一。最后,大数据技术很少单独使用Hadoop,而是会结合生态系统中的其它技术组件如HBase,Spark,Impala,Hive,Pig等对数据进行抽取、存储、处理、计算等。这些技术使得大数据可被访问和利用,但基本都缺乏企业级的安全特性。以上从平台、数据、技术视角对大数据安全与传统数据安全进行了简单的分析,传统安全工具没有为数据多样化、数据处理及Hadoop的分布式特性而改进,不再足以能保证大数据的安全。

传统数据安全技术的概念是基于保护单节点实例的安全,例如一台数据库或服务器,而不是像Hadoop这样的分布式计算环境。传统安全技术在这种大型的分布式环境中不再有效。另外,在大规模的Hadoop集群中,各服务器和组件的安全配置出现不一致的机率将大大增加,这将导致更多的安全漏洞产生。大数据平台存储着各种各样的数据,每一种数据源都可能需要有其相应的访问限制和安全策略。而当需要整合不同数据源时,就变得更加难以平衡对数据的安全策略的应用。同时,快速增长的海量数据使得大数据平台中的敏感信息和个人隐私信息无处不在,准确发现和定位敏感信息并制定针对性的访问控制策略变得愈加困难,而对敏感信息的访问的实时监控也是保障大数据安全的重要任务之一。最后,大数据技术很少单独使用Hadoop,而是会结合生态系统中的其它技术组件如HBase,Spark,Impala,Hive,Pig等对数据进行抽取、存储、处理、计算等。这些技术使得大数据可被访问和利用,但基本都缺乏企业级的安全特性。以上从平台、数据、技术视角对大数据安全与传统数据安全进行了简单的分析,传统安全工具没有为数据多样化、数据处理及Hadoop的分布式特性而改进,不再足以能保证大数据的安全。

2.
考虑要存储什么数据。
在计划使用Hadoop存储和运行要提交给监管部门的数据时,可能需要遵守具体的安全要求。即使所存储的数据不受监管部门的管辖,也要评估风险,如果个人身份信息等数据丢失,造成的风险将包括信誉损失和收入损失。

如何建立完善的大数据安全体系

如何建立完善的大数据安全体系

3.
责任集中。
现在,企业的数据可能存在于多个机构的竖井之中和数据集中。集中的数据安全的责任可保证在所有这些竖井中强制执行一致的政策和访问控制。

面对复杂的大数据安全环境,需要从四个层面综合考虑以建立全方位的大数据安全体系:边界安全、访问控制和授权、数据保护、审计和监控。

面对复杂的大数据安全环境,需要从四个层面综合考虑以建立全方位的大数据安全体系:边界安全、访问控制和授权、数据保护、审计和监控。

4.
加密静态和动态数据。
在文件层增加透明的数据加密。SSL(安全套接层)加密能够在数据在节点和应用程序之间移动时保护大数据。安全研究与顾问公司Securosis的首席技术官和分析师阿德里安·莱恩(Adrian
Lane)称,文件加密解决了绕过正常的应用安全控制的两种攻击方式。在恶意用户或者管理员获得数据节点的访问权限和直接检查文件的权限以及可能窃取文件或者不可读的磁盘镜像的情况下,加密可以起到保护作用。这是解决一些数据安全威胁的节省成本的途径。


边界安全:主要包含网络安全和身份认证。防护对系统及其数据和服务的访问,身份认证确保用户的真实性及有效性。Hadoop及其生态系统中的其它组件都支持使用Kerberos进行用户身份验证。


边界安全:主要包含网络安全和身份认证。防护对系统及其数据和服务的访问,身份认证确保用户的真实性及有效性。Hadoop及其生态系统中的其它组件都支持使用Kerberos进行用户身份验证。

5.
把密钥与加密的数据分开。
把加密数据的密钥存储在加密数据所在的同一台服务器中等于是锁上大门,然后把钥匙悬挂在锁头上。密钥管理系统允许组织安全地存储加密密钥,把密钥与要保护的数据隔离开。


访问控制和授权:通过对用户的授权实现对数据、资源和服务的访问管理及权限控制。Hadoop和HBase都支持ACL,同时也实现了RBAC(基于角色的访问控制)模型,更细粒度的ABAC(Attibute
Based Access
Control)在HBase较新的版本中也可通过访问控制标签和可见性标签的形式实现。


访问控制和授权:通过对用户的授权实现对数据、资源和服务的访问管理及权限控制。Hadoop和HBase都支持ACL,同时也实现了RBAC(基于角色的访问控制)模型,更细粒度的ABAC(Attibute
Based Access
Control)在HBase较新的版本中也可通过访问控制标签和可见性标签的形式实现。