图片 4

输配电设备试验与状态检测技术培训总结报告

开关设备对于数据中心正常运行时间的重要性,开关设备数据中心

在支持数据中心正常运行的所有电气和系统组件中,开关设备通常不被人重视,隐藏在数据中心设施的角落中。但是,如今数字化的快速发展正在改变开关设备的重要性,数据中心设施管理人员必须注意开关设备发挥的重要作用。

随着企业利用移动计算、物联网(IoT)等其他力量产生的海量数据来推动竞争优势,数据中心的作用从未如此重要,因为系统正常运行时间对业务成功越来越重要。业务中断不仅会影响生产力,还会造成重大的财务和声誉损失,影响市场地位。

图片 1

虽然发电机在发生短时间的电力干扰的情况下提供备用电源,但是最佳的设备正常运行时间需要可靠的配电系统,其中开关设备是最重要的。开关设备由用于控制、保护和隔离电气设备的电气隔离开关、保险丝和断路器组成,这与电力供应的可靠性直接相关,为整个数据中心设施供电。在很多情况下,电网和柴油发电机的电源都是通过并由开关设备控制的。因此,开关设备的停机时间意味着就是数据中心的停机时间。

开关设备的重要性日益突出

从历史上看,尤其是在数据中心领域中,开关设备主要提供短路保护功能,使其成为整个设施基础设施中相对被动的部分。设备管理人员只有在发生故障时才与设备进行交互,这种情况很少发生。但这些正式在变化。

随着数据消费的爆炸性增长以及数据中心的物理和计算规模的扩大(美国在超大规模数据中心的数量领先世界),对主动式能源保护和电气可靠性的需求也越来越强烈,这使得整个数据中心(包括开关设备)变得更具互动性和适应性。随着自动转换能力等新技术的进步,开关设备可以(而且必须)处理更多的电气操作,并在被要求操作时必须成功运行。例如,当恶劣天气导致电力设施停电时,开关设备负责自动重新配置配电线路以从电网切换到辅助的电力来源,即发电机。

那么,有着巨大的权力就需要承担巨大的责任。但是这种模式转变是困难的。在传统上使用开关设备很少,如果有的话,许多数据中心设施管工作人员可能没有意识到或解决设备转换的重要性。随着美国数据中心设施基础设施迅速老化,业务预算紧缩,员工和支持人数减少,正在进行的开关设备维护工作正在推迟,使电网的性能面临着一定的风险。这可能会造成在整个数据中心设施中出现故障、中断或电弧闪光问题的可能性。

维护的必要性

由于电气开关设备通常被认为是一个低维护量的产品,它通常是配电系统中最容易被忽视的部件。但是,与任何人工制造的设备一样,开关设备也面临一定的操作限制,需要定期维护以避免故障。就像人们为汽车或飞机提供服务一样,开关设备也必须得到维护,其使用周期与其环境成正比,以及如何处理。

巨大的电能不仅能够通过,而且还可以通过开关设备进行有效的路由和重新路由。这会给电气部件带来压力,特别是在环境不理想的情况下,例如当温度超出最佳性能区域、空气质量差或设备暴露在过度潮湿的环境中(值得注意的是,尽管数据中心内的机架和服务器环境受到严格管制,开关设备通常位于数据中心设施的其他部分,通常不具有相同的环境控制水平)。根据开关设备的类型,一些技术可能更容易受到环境的影响(空气绝缘开关最容易受到影响,惰性气体绝缘和屏蔽固体绝缘开关受到的影响最少)。

在制定开关设备维护计划时,首先要确定维修包括哪些内容:设备周围的环境和设备的职责。典型的问题包括:

  • 是否有空气污染物?
  • 是否有腐蚀性环境?
  • 是否有啮齿动物进入的可能性?
  • 温度和湿度是否符合要求?
  • 开关切换有多频繁?
  • 设备上的电流是多少?与设备的额定值有多接近?
  • 正在切换什么水平的电流?

开关设备创新提高可靠性、节省时间和费用

随着行业的不断发展,成功的企业应将开关设备视为竞争优势,使其能够提供最高水平的电力可用性,同时节省时间和费用。

最近在开关设计方面的创新使数据中心人员能够安装和运行具有持续性能和较低风险的中压网络。例如,在美国引入屏蔽式固体绝缘开关设备(2SIS)技术带来了前所未有的可靠性和安全性,通过将固体材料封装在一个屏蔽绝缘的主要电路部件提供保护以防止内部电弧。这种设计大大减少对系统的损害的可能性,保护带电导体免受可能导致故障的灰尘、水分、湿度和其他环境因素的影响,降低了维护人员触电、弧闪危险、电弧放电危险的风险。

设备成本也是一个关键因素,可以通过承诺采用更新的设备来弥补。现代的基础设施允许使用更小的设备,从而能够在较小的空间内提供相同的功率。现代化技术也是高度模块化的,需要较少的维护和不太复杂的维护,大大降低了相关成本。此外,在更换电力基础设施的同时,可以评估增加配电电压,这也大大节省了成本(减少电缆尺寸、减少电缆长度、减少导管/托盘、减少安装的工作量)。

结论

数据中心内的任何配电和备用系统中,开关设备往往是价值最受低估的组件。但是,随着老化的电气设备需要维护,将重要的数据中心性能置于风险之中,数据中心设施管理人员是否真的能够忽略这个经常被忽视的组件,以确保正常运行时间?

数据中心电力故障的影响可能会以多种方式使企业付出代价,虽然不间断电源(UPS)和发电机等备用系统在需要关闭主电源或发生单点故障时提供备用电源,但现代开关设备是一个可靠的电力网络的核心和灵魂,必须妥善维护。

在支持数据中心正常运行的所有电气和系统组件中,开关设备通常不被人…

如果您企业的数据中心不能保证24/7全天候提供服务,那么您的业务可能不会保持长期正常的运转。我们生活在一个始终不间断运营的商业环境中,最终用户需要随时随地的访问他们所需要的应用程序。

为贯彻落实智能电网发展战略,进一步促进输配电设备安装调试和运维管理的创新和发展,并全面提升企业在电力及输配电设备试验和状态检测方面的技术水平,帮助企业培养拥有掌握电气工程操作理论与实务的人才,根据《关于实施电力高技能人才培训项目的通知》,结合电力行业特点,我参加了中企电联(北京)会议服务中心近期举办的“输配电设备试验与状态检测技术暨注册职业资格《电气工程师》培训”项目。本次项目的实施,对完善企业的电力机构管理,促进电力机构发展,提高企业生产力都有着极为重要的意义。以下就是主要的培训内容以及我的总结体会。

您企业需要增强数据中心的弹性和可靠性。本文中,我们将与您分享有关不间断电源(UPS)安装的安全要求和技巧,以及提高电源可靠性的一些技巧。

1、绝缘介质的电气特性

在今天的24/7全天候运营的商业大环境中,“永远保持在线运行”的业务环境、可靠性和韧性始终是关键任务设施的首要任务。然而,这方面的目标极有可能受到这些设施的日常使用和运行的实际方面的威胁。

绝缘介质的电气特性由电气设备绝缘的组成、绝缘的电气特性、绝缘老化及其影响因素和电力系统绝缘配合组成。

图片 2

在电力系统的实际运行中,绝缘结构的电气和机械性能往往决定着整个电力设备的寿命,绝缘材料品质的下降(即通常所说的绝缘劣化)将导致电力设备的损坏。绝缘介质按材料分为固体绝缘、液体绝缘、气体绝缘以及真空绝缘。材料不同,介质发热绝缘性能以及击穿电压不同,绝缘缺陷的产生原因一般有制造、运输、运行和试验等。而导致绝缘老化的原因有绝缘受潮、化学腐蚀、长期的过负荷运行、电缆接头故障以及环境和温度影响等,而机械损伤和长期过负荷是造成电力系统绝缘老化的主要原因。

有鉴于此,来自Eaton公司的业界专家们将在本文中为您提供对数据中心配电系统的全面了解;其借鉴了该公司在这些领域多年的经验,提供了教科书可能无法提供的相关设计指导和实用性的提示,但却有助于显著提升您企业系统的可靠性、电源可用性和正常运行时间,同时确保安全性和对于相关标准的遵守。

2、绝缘试验与绝缘诊断

数据中心配电系统作为一个整体是从可用电源延伸而来的——其通常往往是从变压器、发电机和不间断电源(UPS)输入,然后通过交换设备、断路器进入到所支持的ICT、冷却设备和相关负载进行输出。因此,我们不仅要了解与电力设备的每个项目相关的问题,还有必要了解这些项目是如何相互影响的。而鉴于这些项目之间的相互影响还可能随着数据中心负载的变化而变化的本质属性,使得我们对于这方面需要特别注意。

绝缘试验与绝缘诊断分为绝缘诊断的基本概念、绝缘电阻和泄漏电流的测量、
介质损耗角正切的测量、局部放电的测量、耐压试验和预防性试验特点总结。

在正常运行和发生故障的两种情况下,保持安全和消除人员和设备的风险无疑是至关重要的。同时还需要考虑电弧,注意其危险性及如何缓解。在本文中,我们将看到同时具备变压器和发电机的电力系统的设计应该能够处理过载的电流和短路条件以及额定运行,尤其注意三极和四极开关的影响、静态旁路、不同的断路器类型和选择性问题。与此同时,电力基础设施未来增长的相关影响也被考虑了——当模块被添加到可扩展系统时,发生故障情况和选择性问题应如何解决?还讨论了如何最大限度地减少人为误差所造成的影响,并回顾了通过互锁实现的保护。

电力设备在运行中进行预防性试验,可及时发现缺陷,减少事故的发生,它已成为我国电力生产中的一项重要制度,预防性试验又可分为非破坏性试验和破坏性试验两大类。非破坏性试验是指在较低的电压下或是用其他不会损伤绝缘的办法来测量绝缘的各种特性,从而判断绝缘内部有无缺陷。破坏性试验是指在高于工作电压下所进行的试验,试验时在绝缘设备上施加规定的试验电压,考验绝缘对此电压的耐受能力。绝缘诊断即采用分析诊断系统利用小波分析技术、神经网络技术、模糊诊断技术、专家分析技术对采集信号进行分析、处理和诊断,得到所测设备绝缘的当前状况,进行绝缘诊断和寿命估计。

文章中还探讨了必须防止静态开关故障引起的反向馈电电流;借助现代UPS系统减轻这些现象,以及过载条件,特别是阶跃变化,以及整流器电流限制。文中还涉及到相关的国际安全立法。在正常运行、维护期间及发生故障的不同条件下的UPS操作的详细考虑因素;系统的可用性和对关键负载的保护及安全性的影响将凸显在开始任何新的UPS安装或升级之前,咨询经验丰富的UPS供应商的可行性。

3、电力设备的在线监测与故障诊断

虽然本文第一部分着眼于配电,但其重点是UPS.而在接下来的几个部分中,则涵盖了UPS和配电主题;馈线和优化,三极和四极开关和选择性问题。总的来说,本文将为大家提供关于如何提高数据中心可靠性和安全性的相关知识,以及如何防止不必要的停机中断。

电力设备的在线监测与故障诊断主要是针对以下设备:主变压器(本体及附件)、电抗器、高压开关、隔离开关、电压互感器、电流互感器、避雷器、电容器、GIS装置、电力电缆、架空线路和绝缘子等。

在动态环境中保持最新状态

在发电厂和变电所中,发电机、变压器、断路器、隔离开关、电抗器、电容器、互感器、避雷器等高压电力设备,以及将它们连接在一起的高压电缆和母线,构成了电能生产、汇集和分配的电气主回路,即电气一次系统。电气一次系统担负着电能的生产、输送和分配任务,是电力系统的主体构架,因此保证各个电力设备的正常运行极为关键。能够实现电力设备在正常运行时的在线监测,然后根据运行特点进行分析,进而进行故障诊断,是具有重大意义的,大大提高了电力系统运行的可靠性。

最关键应用程序的管理人员发现自己需要不断地在可靠性与投资之间进行最佳平衡。伴随着新课题的出现,相关的焦点也随之出现频繁的变化;这方面的例子包括抗震性、环境硫磺污染、EMI、散热、职责的转换等等。

4、带电设备红外检测与诊断技术

反向馈电保护(Backfeed protection) 立法

带电设备红外检测与诊断技术主要依靠带电设备故障发热机理与红外检测技术原理,并且通过DL/T

反向馈电保护是由《IEC 62040-1:2008不间断电源系统(UPS)
标准》的第1部分:《UPS使用的一般要求和安全要求》所规定的。该标准也是欧洲规范,并规定了带有法律强制性要求,以确保UPS安装过程中维修人员的安全。该标准允许反向馈电保护的两种替代方案;在UPS内安装一款内部反向馈电隔离装置,或安装外部输入线路隔离装置,只在UPS内部执行反馈检测和控制,同时在安全标准描述的相关开关设备中需要警告标签。当输入电源丢失时,反馈保护装置必须在15秒内通过分离的方式将电源中任何永久连接的UPS的输出隔离,以防止在上游导致可能的危险电压。请注意,
“反馈”这一术语和本文中涉及到的人员安全和危险电压或能量要求,并不是有时被误认为的反向功率流。

664-2008《带电设备红外诊断应用规范》宣贯与红外诊断应用实例更为深刻地对该技术进行学习与掌握。

重要的是要理解,包括半导体和晶闸管的静态开关以及相关联的控制和缓冲电路可能不能为上游电气网络的安全维护提供足够的隔离,即使其正如企业所预期的那样工作。当静态开关晶闸管的门极信号(gate
signal)关闭并且不通过电源时,电路可能会在上游泄漏一些电压和电流,其足以对人员造成危害。因此,反向馈电保护主要是在正常运行条件下用于UPS系统,而不仅仅是经常被认为的故障情况。

故障信息的状态检测与故障诊断方法分为两大类,传统的方法是仪表或在线检测装置,新型的方法就是红外测温技术。红外测温仪的原理就是带电设备一旦发生故障,设备温度就会高于正常运行时的温度,红外测温不但高效便捷,而且安全可靠。而且随着电压等级的提高,设备绝缘距离加大,在更高电压、更远距离的设备上,红外测温的优点更是显露无疑。

图片 3

5、GIS特高频与超声波局部放电检测技术

图1:具有内部反馈保护装置的UPS与左侧静态旁路开关串联;外部输入线隔离装置的原理在右边实现。

GIS特高频与超声波局部放电检测技术主要依赖特高频局放检测技术与超声波局放检测技术,并且需掌握DMS特高频局放检测仪器使用方法、超声波局放检测仪器使用方法以及典型缺陷放电图谱的识别。

如果依赖于一款外部设备,则该要求将涉及到安装,而不是产品本身。在这种情况下,履行最低立法要求的责任在于电气承包商或安装业主,他们对UPS设备和安装产品的特定安全标准要求可能缺乏足够的了解。

局部放电检测是电力设备绝缘状态诊断的重要方法。GIS的故障涉及绝缘、过热、开关操作等引起的快速暂态过电压、绝缘老化、密封性变差等方面。GIS在制造、使用过程中均可能使GIS内部有电极表面脏污、毛刺、自由粒子、接触不良引起浮电位等缺陷。上述缺陷导致GIS在高电压下造成内部电场畸变,畸变电场发展到一定程度,便形成GIS内的局部放电。在GIS局部放电检测中,特高频法是近年来发展起来的一项新技术。它采用测量GIS内绝缘隐患在运行电压下辐射的电磁波来判断GIS内是否发生局部放电,该方法可以非接触测量及在线监测。

如果外部连接的反馈保护装置在存储能量模式下工作,则可能会受到来自UPS的危险电压的影响。为了让维修人员知晓这种风险,UPS产品安全标准要求用户在UPS和外部反馈保护装置之间的所有开关设备接入点和开关设备上均需明确标示警告标签。

6、电力电缆故障探测技术

图片 4

电力电缆故障探测技术主要包括电力电缆故障探测基础、电力电缆故障测距、电力电缆故障定位以及针对此技术的实例分析。

图2:IEC
62040-1:2008中所述的警告标签,与外部反馈保护装置以及在永久连接的UPS上游使用四极开关时一起使用。

高压电力电缆在高压电力传输中占有重要的地位,广泛应用于生产建设的各行各业中,因此电缆的安全性能非常重要。现代电力电缆故障探测主要采用声磁同步检测工作方式。利用声磁同步检测工作方式可以迅速准确地进行电缆高阻故障定点,同时进行路径探测。当电缆发生故障后,先使用电缆故障测距仪器粗测出故障点距离,再在电缆的一端接高压发生设备,周期性地对电缆施加冲击高压脉冲,使电缆故障点周期性地放电,从而找到故障点。

一些UPS型号有内部反馈保护作为标准,但其他UPS型号则没有。在某些情况下,来自同一家供应商的不同UPS型号产品是否具备内部设备会根据版本的不同而变化。因此,在选择UPS产品,并验证是否必须将反馈保护装置安装到UPS电源中时,必须小心留意。

7、高压开关柜状态检测

对于某些UPS产品型号而言,依靠外部反向馈电保护可能会影响UPS供电配置。其可以强制使用双馈电源,为整流器和旁路供电,而不是采用在许多情况下可以接受的单一馈电,同时节省成本。

高压开关柜状态检测首先判断并分析高压开关柜的故障特征,依靠高压开关柜局放电实用检测技术和高压开关柜局放电数据的分析技术,解决高压开关柜状态检修的管理问题,通过实例分析加深理解并进行巩固。

还值得一提的是,在UPS外部的反馈保护装置将为UPS系统增加“隐藏成本”。该设备将需要与开关设备内的UPS相同或相似的组件,以响应主电源状态进而控制其开关。一款电动机断路器或与过流保护串联的接触器是实现此目的的典型方法。

高压开关柜是高压系统中用来接收和分配电能的成套配电装置,通常一个柜就构成一个单元回路,即一个间隔。高压开关柜具有安全可靠、检修维护方便、占地面积小等特点,因此在3~35kV系统中被广泛采用。高压开关柜广泛地应用在发电厂、变电所中,它们安全、可靠地运行对电力系统是及其重要的,因此需要时刻对高压开关柜的运行状态进行可靠地监测以及分析,新技术的使用提高了开关柜的安全可靠性,并且易于管理。

这些可能会对批准的开关设备的类型产生影响,并带来额外的成本。在安装外部反馈保护装置和相关的控制线路时,也会存在与设计、协调、人力和材料相关的成本。

8、高压开关设备新技术

使用具备安装就绪且经过了工厂测试的内部反馈保护装置的UPS产品有助于确保安全要求是由UPS供应商来履行,而不是依靠他人来处理;这使得解决方案对企业客户而言更容易。

高压开关设备新技术主要针对环保型金属封闭开关设备、断路器手车和接地开关的电动操作、柱上开关和控制器一体化设计及验证以及固体绝缘开关设备。

对容错的影响

高压开关设备的任务是:在正常工作条件下,可靠地接通或断开电路;在改变运行方式时,灵活地进行切换操作;在系统发生故障时,迅速地切除故障部分,以保证非故障部分的正常运行;在设备检修时,隔离带电部分,以保证工作人员的安全。高压开关设备新技术使得高压开关设备向小型化、智能化、免维护、易施工的方向发展,在提高设备可靠性的同时,使得操作更加安全和智能。